208 research outputs found

    Pretreatment cognitive and neural differences between sapropterin dihydrochloride responders and non-responders with phenylketonuria

    Get PDF
    Sapropterin dihydrochloride (BH4) reduces phenylalanine (Phe) levels and improves white matter integrity in a subset of individuals with phenylketonuria (PKU) known as “responders.” Although prior research has identified biochemical and genotypic differences between BH4 responders and non-responders, cognitive and neural differences remain largely unexplored. To this end, we compared intelligence and white matter integrity prior to treatment with BH4 in 13 subsequent BH4 responders with PKU, 16 subsequent BH4 non-responders with PKU, and 12 healthy controls. Results indicated poorer intelligence and white matter integrity in non-responders compared to responders prior to treatment. In addition, poorer white matter integrity was associated with greater variability in Phe across the lifetime in non-responders but not in responders. These results underscore the importance of considering PKU as a multi-faceted, multi-dimensional disorder and point to the need for additional research to delineate characteristics that predict response to treatment with BH4

    Case report: Malignant hypertension associated with catecholamine excess in a patient with Leigh syndrome

    Get PDF
    BACKGROUND: Leigh syndrome is a progressive neurodegenerative mitochondrial disorder caused by multiple genetic etiologies with multisystemic involvement that mostly affecting the central nervous system with high rate of premature mortality. CASE PRESENTATION: We present a 3-year, 10 month-old female patient with Leigh syndrome complicated by renal tubular acidosis, hypertension, gross motor delay, who presented with hypertensive emergency, persistent tachycardia, insomnia and irritability. Her previous genetic workup revealed a pathogenic variant in the MT-ND5 gene designated as m.13513G \u3e A;p.Asp393Asn with a heteroplasmy of 69%. She presented acutely with malignant hypertension requiring intensive care unit admission. Her acute evaluation revealed elevated serum and urine catecholamines, without an identifiable catecholamine-secreting tumor. After extensive evaluation for secondary causes, she was ultimately found to have progression of her disease with new infarctions in her medulla, pons, and basal ganglia as the most likely etiology of her hypertension. She was discharged home with clonidine, amlodipine and atenolol for hypertension management. This report highlights the need to recognize possible autonomic dysfunction in mitochondrial disease and illustrates the challenges for accurate and prompt diagnosis and subsequent management of the associated manifestations. This association between catecholamine induced autonomic dysfunction and Leigh syndrome has been previously reported only once with MT-ND5 mutation. CONCLUSIONS: Elevated catecholamines with malignant secondary hypertension may be unique to this specific mutation or may be a previously unrecognized feature of Leigh syndrome and other mitochondrial complex I deficient syndromes. As such, patients with Leigh syndrome who present with malignant hypertension should be treated without the need for extensive work-up for catecholamine-secreting tumors

    Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity

    Get PDF
    <div><p>Objectives</p><p>To examine longitudinal changes in structural and functional connectivity post-stroke in patients with motor impairment, and define their importance for recovery and outcome at 12 months.</p><p>Methods</p><p>First-time stroke patients (N = 31) were studied at 1–2 weeks, 3 months, and 12 months post-injury with a validated motor battery and resting-state fMRI to measure inter-hemispheric functional connectivity (FC). Fractional anisotropy (FA) of the cortico-spinal tract (CST) was derived from diffusion tensor imaging as a measure of white matter organization. ANOVAs were used to test for changes in FC, FA, and motor performance scores over time, and regression analysis related motor outcome to clinical and neuroimaging variables.</p><p>Results</p><p>FA of the ipsilesional CST improved significantly from 3 to 12 months and was strongly correlated with motor performance. FA improved even in the absence of direct damage to the CST. Inter-hemispheric FC also improved over time, but did not correlate with motor performance at 12 months. Clinical variables (early motor score, education level, and age) predicted 80.4% of the variation of motor outcome, and FA increased the predictability to 84.6%. FC did not contribute to the prediction of motor outcome.</p><p>Conclusions</p><p>Stroke causes changes to the CST microstructure that can account for behavioral variability even in the absence of demonstrable lesion. Ipsilesional CST undergoes remodeling post-stroke, even past the three-month window when most of the motor recovery happens. FA of the CST, but not inter-hemispheric FC, can improve to the prediction of motor outcome based on early motor scores.</p></div

    Diffusion tensor imaging in children with unilateral hearing loss: A pilot study

    Get PDF
    Objective: Language acquisition was assumed to proceed normally in children with unilateral hearing loss (UHL) since they have one functioning ear. However, children with UHL score poorly on speech-language tests and have higher rates of educational problems compared to normal hearing (NH) peers. Diffusion tensor imaging (DTI) is an imaging modality used to measure microstructural integrity of brain white matter. The purpose of this pilot study was to investigate differences in fractional anisotropy (FA) and mean diffusivity (MD) in hearing- and non-hearing-related structures in the brain between children with UHL and their NH siblings. Study Design: Prospective observational cohortSetting: Academic medical center.Subjects and Methods: 61 children were recruited, tested and imaged. 29 children with severe-to-profound UHL were compared to 20 siblings with NH using IQ and oral language testing, and MRI with DTI. 12 children had inadequate MRI data. Parents provided demographic data and indicated whether children had a need for an individualized educational program (IEP) or speech therapy (ST). DTI parameters were measured in auditory and non-auditory regions of interest (ROIs). Between-group comparisons were evaluated with non-parametric tests. Results: Lower FA of left lateral lemniscus was observed for children with UHL compared to their NH siblings, as well as trends towards differences in other auditory and nonauditory regions. Correlation analyses showed associations between several DTI parameters and outcomes in children with UHL. Regression analyses revealed relationships between educational outcome variables and several DTI parameters, which may provide clinically useful information for guidance of speech therapy. Discussion/Conclusion: White matter microstructural patterns in several brain regions are preserved despite unilateral rather than bilateral auditory input which contrasts with findings in patients with bilateral hearing loss

    MRI-based classification of IDH mutation and 1p/19q codeletion status of gliomas using a 2.5D hybrid multi-task convolutional neural network

    Get PDF
    Isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status are important prognostic markers for glioma. Currently, they are determined using invasive procedures. Our goal was to develop artificial intelligence-based methods to non-invasively determine these molecular alterations from MRI. For this purpose, pre-operative MRI scans of 2648 patients with gliomas (grade II-IV) were collected from Washington University School of Medicine (WUSM; n = 835) and publicly available datasets viz. Brain Tumor Segmentation (BraTS; n = 378), LGG 1p/19q (n = 159), Ivy Glioblastoma Atlas Project (Ivy GAP; n = 41), The Cancer Genome Atlas (TCGA; n = 461), and the Erasmus Glioma Database (EGD; n = 774). A 2.5D hybrid convolutional neural network was proposed to simultaneously localize the tumor and classify its molecular status by leveraging imaging features from MR scans and prior knowledge features from clinical records and tumor location. The models were tested on one internal (TCGA) and two external (WUSM and EGD) test sets. For IDH, the best-performing model achieved areas under the receiver operating characteristic (AUROC) of 0.925, 0.874, 0.933 and areas under the precision-recall curves (AUPRC) of 0.899, 0.702, 0.853 on the internal, WUSM, and EGD test sets, respectively. For 1p/19q, the best model achieved AUROCs of 0.782, 0.754, 0.842, and AUPRCs of 0.588, 0.713, 0.782, on those three data-splits, respectively. The high accuracy of the model on unseen data showcases its generalization capabilities and suggests its potential to perform a 'virtual biopsy' for tailoring treatment planning and overall clinical management of gliomas

    Relationship between age and white matter integrity in children with phenylketonuria

    Get PDF
    Diffusion tensor imaging (DTI) has shown poorer microstructural white matter integrity in children with phenylketonuria (PKU), specifically decreases in mean diffusivity (MD), in comparison with healthy children. However, little research has been conducted to investigate the relationship between age and white matter integrity in this population. The present study examined group differences in the relationship between age and MD across a range of brain regions in 31 children with early- and continuously-treated PKU and 51 healthy control children. Relationships among MD, age, and group were explored using hierarchical linear regression and Pearson correlation. Results indicated a stronger age-related decrease in MD for children with PKU in comparison with healthy children in 4 of the 10 brain regions examined, suggesting that the trajectory of white matter development is abnormal in children with PKU. Further research using longitudinal methodology is needed to fully elucidate our understanding of white matter development in children with PKU

    A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients

    Get PDF
    Localizing neurologic function within the brain remains a significant challenge in clinical neurosurgery. Invasive mapping with direct electrocortical stimulation currently is the clinical gold standard but is impractical in young or cognitively delayed patients who are unable to reliably perform tasks. Resting state functional magnetic resonance imaging non-invasively identifies resting state networks without the need for task performance, hence, is well suited to pediatric patients. We compared sensorimotor network localization by resting state fMRI to cortical stimulation sensory and motor mapping in 16 pediatric patients aged 3.1 to 18.6 years. All had medically refractory epilepsy that required invasive electrographic monitoring and stimulation mapping. The resting state fMRI data were analyzed using a previously trained machine learning classifier that has previously been evaluated in adults. We report comparable functional localization by resting state fMRI compared to stimulation mapping. These results provide strong evidence for the utility of resting state functional imaging in the localization of sensorimotor cortex across a wide range of pediatric patients

    The association between implicit and explicit affective inhibitory control, rumination and depressive symptoms

    Get PDF
    Inhibitory control underlies one’s ability to maintain goal-directed behavior by inhibiting prepotent responses or ignoring irrelevant information. Recent models suggest that impaired inhibition of negative information may contribute to depressive symptoms, and that this association is mediated by rumination. However, the exact nature of this association, particularly in non-clinical samples, is unclear. The current study assessed the relationship between inhibitory control over emotional vs. non-emotional information, rumination and depressive symptoms. A non-clinical sample of 119 participants (mean age: 36.44 ± 11.74) with various levels of depressive symptoms completed three variations of a Go/No-Go task online; two of the task variations required either explicit or implicit processing of emotional expressions, and a third variation contained no emotional expressions (i.e., neutral condition). We found reductions in inhibitory control for participants reporting elevated symptoms of depression on all three task variations, relative to less depressed participants. However, for the task variation that required implicit emotion processing, depressive symptoms were associated with inhibitory deficits for sad and neutral, but not for happy expressions. An exploratory analysis showed that the relationship between inhibition and depressive symptoms occurs in part through trait rumination for all three tasks, regardless of emotional content. Collectively, these results indicate that elevated depressive symptoms are associated with both a general inhibitory control deficit, as well as affective interference from negative emotions, with implications for the assessment and treatment of mood disorders

    On the role of the corpus callosum in interhemispheric functional connectivity in humans

    Get PDF
    Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity

    Semi-automated segmentation of the lateral periventricular regions using diffusion magnetic resonance imaging

    Get PDF
    The lateral ventricular perimeter (LVP) of the brain is a critical region because in addition to housing neural stem cells required for brain development, it facilitates cerebrospinal fluid (CSF) bulk flow and functions as a blood-CSF barrier to protect periventricular white matter (PVWM) and other adjacent regions from injurious toxins. LVP injury is common, particularly among preterm infants who sustain intraventricular hemorrhage or post hemorrhagic hydrocephalus and has been associated with poor neurological outcomes. Assessment of the LVP with diffusion MRI has been challenging, primarily due to issues with partial volume artifacts since the LVP region is in close proximity to CSF and other structures of varying signal intensities that may be inadvertently included in LVP segmentation. This research method presents:•A novel MATLAB-based method to segment a homogenous LVP layer using high spatial resolution parameters (voxel size 1.2 × 1.2 × 1.2 m
    • …
    corecore